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Dirichlet problem for ordinary differential operators

and the Laplacian

Yoichi Miyazaki

Abstract

Let A be the divergence-form elliptic operator of order 2m defined in a domain Q of R™ with
smooth bounded boundary. Let 1 < p < co. It is known that under suitable conditions the
bounded inverse of (A4 — A) exists for A in a certain sector if A is regarded as a bounded
operator from the L? Sobolev space of order m associated with the Dirichlet condition to
the L? Sobolev space of order —m, and that its proof is reduced to that of a proposition,
in which it is assumed that A is a homogenuous operator with constant coefficients and
that Q is the half space. This paper is intended to give another proof of this proposition
forn=1orm=1.
Key words: elliptic operator, divergence form, resolvent, L theory, Dirichlet boundary value

problem, Fourier multiplier, Poisson kernel

1. Introduction
Let € be a domain in the n-dimensional Euclidean space R™ and let A be the 2mth elliptic
operator of divergence form defined by

Au(m)= > D(aas(z)D’u(z)),
|af<m, |B]<m

where = (zy,...,%,) is a generic point and @ = (ay,...,a,) and B are multi-indices and
]

=(Dy,...,D,), D;j=-V=
D ( 1, 3 ) J 1(91']

(G=1,...,n).
We assume that the principal symbol a(z, £) of A satisfies

a(@, &) = Y aas(2)€t? > 540

l|=| 8|=m

for any € 2 and £ € R™ with some d4 > 0 and that the coefficients a,s are measurable and
bounded. We set

Ca=(n,m, 04, Ma),  Ma= e llaasllLe=(n),
wale)= max sup  sup  [aqs{z + k) — ans(z)l,

la|=[8l=m 2€0 |n|<e, 2 +heQ

AR,0)={2z€C: |z| >R, 0 <argz < 2r — 0}.
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For a fixed p € {1, 00) we regard A as a bounded operator:
A HVP(Q) —» H ™P(Q).

Here Ho?(Q) with o € R is the L? Sobolev space of order o and H;?(Q) is the completion
of C§°(£2), the space of C* functions with compact support, in H”?(£2).

When p = 2, by associating A with a sesquilinear form we can apply the theory of Hilbert
spaces. In particular, Garding’s inequality and Lax-Milgram’s theorem show that (A — A) has
a bounded inverse for A in an appropriate region of the complex plane C. It is important
to derive a similar result for a general p € (1,00). In [1, 2, 3] the following theorem was
established.

Theorem 1.1. Let p € (1,00) and 6 € (0,7/2). Suppose that the coefficients anps with
la] = |B| = m are uniformly continuous in the closure of (1 and that one of the following is
satisfied:

(i) 0 =R,

(i) @ = R}, where R} = {(¢',2,) : 2’ € R**, 2, > 0},

(iii) Q is @ domain with C™! bounded boundary.
Then we conclude that there are R = R(p,0,{a,wa) > 1 and K = K(p,0,{4) > 0 such that

the resolvent (A — \)~! exists and satisfies
(A = N g-ir (@) mom(@) < KN THTEH)/2m (1.1)
for0<i<m,0<j<mand X € A(R,9).

Theorem 1.1 was proved when @ = R™ in [1], when m = 1 in [2], and for the general case in
[3]. According to [2], the proof of Theorem 1.1 is reduced to that of the following proposition.

Proposition 1.2. In addition to the assumptions in Theorem 1.1 suppose that A is a homo-
geneous operator with constant coefficients and Q = R7. Then the conclusion of Theorem 1.1
is valid with R = 1.

Proposition 1.2 was proved when m = 1 by the reflection method in [2] and for the general
case in [3]. The purpose of this paper is to give another proof of Proposition 1.2 when n = 1
(ordinary differentail operators) or m = 1 (second-order operators).

Let us suppose the assumptions in Proposition 1.2. Let A € C\ [0,00) and z = (2’,z,)
with ' € R*~! and z,, > 0. Showing the existence of the resolvent is equivalent to finding a
solution u € Hy " (R%) to the equation

(A= Nu=f

(1.2)
Dly(z',0)=0 (I=1,...,m)
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for a given f € H-™P(R?%). Estimate (1.1) is equivalent to
lull o) < KN D27 £l (13)

for 0 <i < m and 0 < j < m with some constant K'. Equation (1.2) can be solved by setting
u = v +wy with vy, wy € H™P(R%) satisfying the equations

(A=XNvr=f (1.4)

and
(A — /\)U))\ =0

- (1.5)
Dn wk(m”o):gl(a"’) (l:177m)

with g;(z') = —D. lv(z’,0). We note that g, € By " "V/P(R"1) if n > 2 and ¢, € C if
n = 1. The mapping {g:}1<i<m > wy is called the Poisson operator.

As shown in [3], it is easy to solve equation (1.4) and get estimate (1.3) with u replaced by
vx. So it remains to solve (1.5) with norm estimates. When n = 1 or m = 1, the problem is
simpler than that of the general case because the algebraic equation

a(m7flafn) -A=0 (16)

for &, has no multiple root. The case n = 1 is treated by evaluating deteminants in Section 2.

In Section 3 we consider the case of m = 1 and n > 2. As stated in [2], a linear transformation
reduces the problem to the case of the Laplacian. Then w, satisfying (1.5) is expressed by
a Fourier multiplier in the z'-space with parameter z,,. The norms of wy in the L? Sobolev
spaces are estimated by Mihlin’s multiplier theorem [4, Theorem 6.16] and a theorem of LP
boundedness for the integral operator associated with the Fourier multiplier (Lemma 3.3).
In [3] we succeeded in proving Proposition 1.2 for the general case by developing the idea of
Section 3 and using the formula for the Poisson operator by the Cauchy integral (see [5]),
which enables us to deal with the case where (1.6) has multiple roots.

When p = 2, the norms of wy, for the Laplacian can be estimated more easily than in Section
3 with help of Parseval’s formula. This method is presented in Section 4.

2. Ordinary differential operators
In this section we consider the case n = 1 and give another proof of Proposition 1.2. So we
have = Ry = (0, 00) and

1 d\*™" dzm
A = —_—— = —1 Mo —
a(\/—l diL’) (=1) Yz
where a is a constant. Clearly 64 = M4 = a. Equation (1.5) is rewritten as
(A — /\)w)\ =0

WO =g (=1,..,m) .

_3_



H AR 23R 2E 32, 1-10, 2004

with g; € C, where we replaced (v/—1)""'g; by g;. The argument in [3] shows that the proof
of Proposition 1.2 is reduced to that of the following lemma.

Lemma 2.1. Let p € (1,00) and § € (0,7/2). Then there exists C = C(p,8,(4) such that

the solution wy to equation (2.1) satisfies

m

lwallgsem,) < CIAPZmH2me 3= 3 0=0/2m g
=1

for1<j<m and X € A(1,6).
Proof. Without loss of generality we may assume a = 1. Set

7j(\) = V=L DmVEI2m )12m (51 2m),

where z1/2™ stands for the branch of the power which is positive when z > 0. It is easy to see
that —/=17;(A) (j = 1,...,2m) are the roots of 2™ — X\ = 0 and that

Rer;(\) <0 (j=1,...,m) and Rer;(A)>0 (j=m+1,...,2m).

So the solution w)y to (2.1) can be found in the form

where ¢;’s satisfy

which is equivalent to
Tc=y,
where T = (Tj(/\)k”l)k ,e="te1,...,cn) and g = *(g1,...,9m). Let S (I =1,...,m) be
J

the matrix obtained from T by replacing the {th column with g, that is, S; = (sl kj) with
T kg
sik; = 13 (A)*1 for j # 1 and s 4; = gk for j = 1. Then Cramer’s formula gives

. det S;
T detT”

&)

Since |7x(A) — 7;(A\)] > |eV=T™/™ — 1||A]Y/2™ for k # j and detT is the determinant of

Vandermonde’s matrix, we have

det T| = J] I7e(X) = 75(N)] > e(|A[/2mymm=172 = ¢|3|(m=1)/4,
k<y
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On the other hand,

o {(§)— 9o (1)
5'_—2 a‘ll .,_—E o II./\(J)l
det S > sgn ( )j 1sz,a(J)] . sgn (o) j 173( ) A1

where the sum is taken over all the permutations of order n. Using the equality

m

@) —1/2m=>_(G-1)/2m=(m-1)/4

J=1

NE

.
JL

which follows from {o(1),...,0(m)} = {1,...,m}, and noting U,{c())} = {1,...,m}, we

have

ldet S| < Z H |)\l(a'(j)—1)/2m [}\|(1—U(l))/2m|ga(l)f

4 j=1
< (m— DY DAk g ),
k=1
Therefore we get
] <C Y IR gy .
k=1

Since Re7;(A) < —(sin 52-)|A[Y/?™, we have

NIE

wa\j)HLv(RJr) <Y lean (W) e ™| o, )

i

1

leal - IAF/2™ (p|Re7; (W) 71/7

IA
NE

o~

IA

1
C |)\|(1—k)/2m|gk|1)\|j/2m—1/2mp’
=1 k=1

from which the lemma follows. O

3. Laplacian
In this section we consider the case of m = 1 and n > 2 and give another proof of Proposition
1.2. For sake of simplicity we use the following notation:

! ! a 1
l':(l',t), x :(1'1,...,.'13"._1), Dn:—\/—la, 5 :(517~~-7§n~1)-

As stated in Introduction, we may assume A = —A. So equation (1.5) is rewritten as
—“A—=XNwy=0
( Jwa (3.1)
wx(z',0) = g(z')
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with g € By /P(R"~1). Moreover, by virtue of the argument in [3] the proof of Proposition
1.2 is reduced to those of Lemmas 3.2, 3.4 and 3.5 below.
By the partial Fourier transformation 7', which is defined by

]‘-’U(f’,t) =/ e—\/—_l:c'glu(m/,t) d.'L'I,
Rnr-—1

equation (3.1) is transformed into
(=2 +1612 = 2) Fuse,t) =0
ot2 ’
Fwa(¢',0) = Fg(&),
where Fg denotes the Fourier transform of g. Since F'wy(¢',t) — 0 as t — oo, we have
Flua(€,1) = e TENFy(¢))

with 7(¢§', A) = 1/|¢'|? — A, where /z stands for the branch of the square root which is positive
for z > 0, and therefore

wy(e',t) = (2m) " /R B eV e tr (€2 Fo(eh) ge! (3.2)
— (27r)1—n/ e\/—_l(w'—y')ﬁle—t‘r({',)\)g(y/) dyl dfl
R2n—2
Lemma 3.1. The inequality

Revs—A> %%(51/2 + [A1Y?) (3.3)

holds for s > 0 and A € C\ [0, 0c0), where d(X) = dis(), [0, 00)). Moreover, for any 6 € (0,7/2)
and a € N1 there ezist c = c¢(f) and C = C(6,a) such that

Rer(¢,2) 2 e(¢] + \'/%), (34)
98 7(€', M) < CUE'|+ A2, (3.5)
lagle—tf(fl,)\)l < C(Igll + |)\ll/2)—|a|e~ct(|£'|+|)\il/2) (36)

fort>0,¢ ¢ R and X € A(1,6).

Proof. Note that \/z + v—1y = X +/=1Y with z,y, X, Y € R implies 2X? = z + /22 + y2.
Hence setting X = Rev's — A, we have

2X2:(S—)\R)+ (S—AR)2+)\%,

where A = Agp + v/ —1A; with Ag, A; € R. There are four cases to evaluate X. When Ap <0,
2X% > /(s + | ArDZ + A2 > /s2 + A2
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When 0 < 2Mg < s,
2X2 > 4/(2718)2 + A2 > /8 1(s2 + [A]?).

When 0 < Ag < s < 2Ag,
d)\? A\ 2
2 2d 2 (53) W2 (T) VETE T
Al RY
When 0 < s < Ag,

2X?% > o > N > dO)? V27 (s + [A2).

T Ar-8)+VOr—8)ZFX T 2 T 2P

Summing up, we get 2X2 > 471(d(X)/|A])21/s2 + |\, from which (3.3) follows.

Inequality (3.4) with ¢ = 8 !sin# is an immediate consequence of (3.3).

We have 9,7 = &7~ and 8, 0,7 = 67t + & - (=1)772 - §7L. So induction on « leads
to

ogT = il Z CoptP 18,
f<a

This combined with |7(¢&', \)| > ¢(|¢'| 4 [A|*/2), which follows from (3.4), gives (3.5).

Simple calculation shows

0ge N = N Oy tFOSIT(ELN) - O T(EN) e ITEN,

o1t Fag=a

So (3.4) and (3.5) give

Bge™TEN| < 37 Cuth (] 4+ NIl I THA),
k<|al

Then use of the inequality sFe=%° < k*(ae)~* for s > 0, a > 0 and k > 0 yields (3.6). O

Lemma 3.2. Let p € (1,00) and § € (0,7/2). Then there exists C = C(p,0,(a) such that
the solution wy to (3.1) satisfies

llwallLe®s) < CINTY?| gl Lo me-1)  for A € A(L,6).

Proof. By (3.6) we have
je'fle!
for |a| < [n/2] + 1. So Mihlin’s multiplier theorem yields

agge—”(&’)\) I < Ce—ctiN?

—etIn|1/2
[[wa(- )l o@n—1) < Ce™ ™ lg]| Lo (rn-1).

Then the lemma follows from |le_cﬂ>‘|l/2ml|Lp(R+) = C[\|~1/?, O
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Lemma 3.3. Let p € (1,00). Assume that K(z',t) satisfies

K (2, )] < Crt™™(L+|a’| /)" (3.7)
with some constants Cy > 0 and o € (0,1/p), and set

u(z',t) = - K(y', t){g(z' —y') — g(z') } dy’

forge le,p_l/p(R"_l). Then u € LP(R%) and there exists C = C(n,p,0) such that
Hu”LP(Ri) < CCl||9||B;51/p(Rn_1)~
Proof. By (3.7) we have

O R L (G I WP PR

<G TN L YT Ay gl @ey  dy’
G ‘ = T

We can regard the last integral as a bounded operator from LP(R™71, [y'|*~"dy') to LP (R, ¢t~ 'dt)
with kernel H(y',t) = (|y'|/)"~YP(1 + |y'|/t)° " for

/ Hy, )y’ "dy = / WP+ )y
Rn—1 Rr—1
= C’/ s"TIT/P(1 4 5)° s < oo,
0
/ Hy' it ldt = / s"TITVP(1 4 57" ds < oo
0 0

Since ”UHLP(R¢) = ||t1/P||u( Stllee@e-1yllLe Ry t-14t), We get the lemma. O
Lemma 3.4. Let p € (1,00), 0 € (0,7/2) and 1 < k < n. Then there ezists C = C(p,0,(4)
such that the solution wy to (3.1) satisfies

I1Dxwallzemy) < Cligllgr-sregn-1y  for X € A(L,6).

PP

Proof. Set

Kx(z',t) = 2n)t™ eV T g et (@) gt
Rn—1

Then we have
Dkw)\(mlat) - K)\(l" - yl7t)g(yl) dy,
Rn—l

= [ w010l =) — g} dy',
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where we used [p._, Kx(z',t)de’ = §ke—”(5l’>‘)|£,:0 = 0. Now we shall show that for any
o € (0,1) there exists C; = C1(p, o) such that K (z', t) satisfies inequality (3.7) with K = K.
By (3.6) we have
K2, )] 50/ €'l €' g’ < Ct‘”/
Rn—l

R~

|¢'le~ K dg’ < ct. (3.8)
-1
On the other hand, integration by parts gives

’et an 1
n ! — v—1la'§ —t7(&,A) !
7 Ky(z',t) = C . e _—35;1 (fke ) d¢

— V-1z'e' _ ﬁ ~t7(&',) i
G 1)66? (fke ) de

for 1 < j < n. Using the inequality |eV~1* — 1| < 2|s|° for s € R and & € (0,1), we have
25" K (', 0)] < € / [2/[71¢'1° (1] + A2y et D g
Rn—1

<cle” [ jelriTe il < clefe,
Rr—1
where it should be noted that the last integral is integrable for ¢ + 1 —n > 1 — n. Therefore
IKx(z',t)| < Clz'|”™t™°. (3.9)

Since |¢'| < t implies t™"(1 4 |2'|/t)7~™ > 277"t~ ™, and |z'| > ¢ implies t~"(1 + |2'| /)" =
A+ |2 |/) (@ + |2'|)™™ > (|='|/t)7(2]2'|)~™, inequalities (3.8) and (3.9) show that K (z',t)
satisfies (3.7) with K = K.

Finally, the lemma follows from Lemma 3.3. O

Lemma 3.5. Let p € (1,00) and 6 € (0,7/2). Then there exists C = C(p,0,(4) such that
the solution wy to (3.1) satisfies

“an)\”LP(Ri) <C (HgHB}l’;l/P(Rn«l) + |/\|1/2_1/2PHQHLP(R"—1)) for A e A(1,6>'

Proof. Set

Ky(z',t) = v/=1@2r)t ™" eﬁm,élr(f',A)e—tT(é/’A) d¢’.
R’n—l
Then we have

Dpwy(2',t) = - Kx(z' -y, t)g(y") dy’' (3.10)

= s Ky, ){g(z' —y") — g(z')} dy' + Jxr(t)g(z"),
where

L) = | K@, t)de' = V=1r(0,\)e” 7OV,
Rn—1

The last integral in (3.10) is estimated in the same way as in the proof of Lemma 3.4. The last
term in (3.10) is evaluated by [|Jx]|ze(,) < C|A|}/271/2P. Therefore the lemma follows. O
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4. Simple proof for the Laplacian when p = 2

When p = 2, we do not need Mihlin’s multiplier theorem and Lemma 3.3 to prove Lemmas
3.2, 3.4 and 3.5. In fact, we can prove these lemmas as follows.

Using Parseval’s formula, Fubini’s theorem and Lemma 3.1, we get from (3.2)

llwallze s, Z/ dt/ wa(a', 1) dw’z/ dt/
0 Rn—1 0 Rr—1

1 L
B /Rn_l Her@n 9¢ )| dé

<O [ IFa(e)R d < O sy

e ENF(e)] dg (41)

Differentiation of (3.2) yields the formulas for D;wy (1 < j < n) and D,w, by the Fourier
multipliers with symbols £e=*7¢"Y) (1 < j < n) and v/=17(€',\)e *"¢" ) respectively. In
the same way as in {4.1) we get

lE]z ! !
1Dy = | gty PO de

<0 [ I6IF6E) d < Clllagnns

for1<j<mnand

_ [T, M) N2 gt
HanAH%%Ri) = /Rn_l mlfg(f )| de

<c [ (gl NIFgE)R de

<C (HQHHl/z(Rn—l) + I)\[l/ZHg”%z(Rn_l)) )
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