歯科用アマルガムの電気化学的挙動におよぼす炭酸水素塩の影響

横瀬 勝美^{1,2} 鈴木 信雄³ 湯浅 智⁴ 野元 成晃⁵

Effect of hydrogencarbonate on the electrochemical behavior of dental amalgams

Katsumi Yokose^{1,2}, Nobuo Suzuki³, Satoshi Yuasa⁴ and Shigemitsu Nomoto⁵

Abstract

The polarization behavior of different types of dental amalgam in 100mM hydrogencarbonate solution with or without sodium chloride was studied by the potential sweep method with a sweep rate of 200mV/s. The dental amalgam electrodes were prepared from a conventional amalgam alloy and three high-copper amalgam alloys, following the manufacturers' instructions with regard to mercury-alloy ratios and trituration times. In the absence of chloride ions, it was found that the oxidation of tin in conventional amalgam decreased as the pH was increased. With a supporting electrolyte solution of sodium chloride, addition of hydrogencarbonate resulted in a decreased current for the oxidation of tin. The potential sweep polarization curves for high-copper dental amalgam in hydrogencarbonate solution exhibited an anodic current peak due to the oxidation of copper. With a supporting electrolyte solution of sodium chloride, addition of nydrogencarbonate resulted in a decreased current for copper oxidation.

Key words: copper, corrosion, dental amalgam, hydrogenecarbonate, tin

緒 言

歯科用金属の電解質溶液内における広い電位 範囲にわたる電気化学的挙動を検討するため, 著者らは電流規制繰り返し充放電曲線測定(以 下,充放電曲線測定と略す)¹⁻⁵⁾および電位走査 法⁶⁻¹²⁾を利用している。著者らは,通常採用して いる条件で,前者は金属を十分に酸化した状態, 後者は主として酸化初期の状態,に関する知見 が得られるので,両者は互いに相補的な検討法 であると考えている。

炭酸水素塩は唾液緩衝能を担う主要成分であ り、口腔内修復金属の電気化学的挙動と炭酸水 素塩の関係を知ることは極めて重要であるとの

4湯浅歯科医院

- 5日本大学総合科学研究所 〒101-8310 東京都千代田区神田駿河台1-8-13 (受理:2006年9月28日)
- ¹Department of Chemistry, Nihon University School of Dentistry
- ²Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
- ³ Medical Section of Koriyama, Ground Self Defense Force ⁴ Yuasa Dental Clinic
- ⁵Research Center of Nihon University
- 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan

¹日本大学歯学部化学教室

²日本大学歯学部総合歯学研究所機能形態部門

³陸上自衛隊郡山駐屯地医務室

考えから、充放電曲線測定により、歯科用アマ ルガム¹³⁻¹⁵⁾および歯科用銀合金¹⁶⁻¹⁸⁾について 検討した。炭酸水素塩単独溶液中においては歯 科用金属が不活性であり、塩化物イオンが共存 すれば酸化が加速されることを示した。前報¹²⁾ では電位走査法により炭酸水素を基礎溶液と し、塩化物イオン添加によって歯科用アマルガ ムの酸化が加速されることを示したが、本報で は電位走査法により炭酸水素塩のpHによる歯 科用アマルガムの電気化学的挙動の変化ととも に、塩化ナトリウム溶液を基礎溶液として炭酸 水素塩濃度の影響について検討した。

材料と方法

1.電 極

試料電極は,市販の歯科用アマルガム合金4 種(従来型削片状合金1種,高銅型合金3種) を用いて調製した。各電極の本論文で用いる略 号,合金名,組成(製造社表示値)は表1に示 すとおりである。試料電極(電極表面積0.126 cm²)の調製は野元ら⁶⁾と同様に行った。電極は アマルガム練和後6ヵ月以上経過したものを使 用し,供試直前に耐水エメリー紙(#1200,三共) を用い,注水下で研磨した。対極として自金極 (HP-105,東亜電波工業),参照極として自金極 (HP-105,東亜電波工業)を用いた。 以下,この参照極に対する電位をV(SCE)と 略記する。

2.溶 液

基礎溶液として 50 mM 炭酸水素ナトリウム

溶液,100 mM および 50 mM の塩化ナトリウ ム溶液を用いた。添加溶液としては硫酸および 炭酸水素ナトリウム溶液を用いた。試薬はすべ て分析試薬一級である。溶液はとくに脱酸素す ることなく,室温で実験した。電解用セルは 100 ml 用硬質ガラス製ビーカーであり,各測定に用 いた基礎溶液の液量は 50 ml である。

3. 電位走查曲線測定装置

電位走査曲線の測定はポテンショスタット (HA-101,北斗電工)に電位走査装置(HB-101, 北斗電工)を付加して行い, X-Y記録計(F-3 DP, 理研電子)で記録した。

4. 測定操作

試料電極を研磨し,水洗の後,基礎溶液に浸 漬する。浸漬後,直ちに電位走査を開始し,走 査開始3分後に電位走査曲線を記録した。次い で電磁式撹拌器(M-21, ヤマト科学)で撹拌し つつ所定のpH あるいは濃度になるように硫酸 あるいは炭酸水素ナトリウム溶液を加え,撹拌 開始から1分後に撹拌を止める。この間,走査 を続行させたままとし,前回の電位走査曲線記 録から3分経過後に添加溶液の電位走査曲線を 記録した。以後,添加溶液をさらに加えpH ある いは濃度を変え,電位走査曲線の測定記録を繰 り返した。電位走査範囲 0.4~-1.5 V (SCE),で 一定である。

Code	Alloy	Composition (mass%)							Rotch No
		Ag	Sn	Cu	Zn	Hg	Pd	others	Daten No.
СР	G-C's Pre Non Zinc Luna Alloy	70	26	3	_	1	_	_	JJ 13
DJ	Johnson & Johnson Dispersalloy	70	16	13	1	—		—	11 GG
DG	G-C's Dialloy	60	25	10	_	—	1	4	JM 4
DS	Shofu Spherical-D	60	22	13	—		—	5	117860

表1 Amalgam Alloy

図1 CP 極の 50 mM 炭酸水素ナトリウム溶液中 における電位走査曲線

図 2 CP 極の 100 mM 塩化ナトリウム溶液中にお ける電位走査曲線

図 3 CP 極の 50 mM 塩化ナトリウム溶液中にお ける電位走査曲線

成 績

1. С Р 極

CP 極の成績を図1~3に示す。pH7の炭酸 水素ナトリウム溶液中でCP 極は不活性であ り,低い酸化還元電流を示すのみであった(図 1)。pH5と4では-0.5V(SCE)より貴な電 位域の酸化電流,卑な電位域の還元電流が増加 した。100 mM 塩化ナトリウム溶液に炭酸水素 ナトリウムを添加すると、0.0V(SCE)付近の 酸化電流が低下し、それとともに-0.8V(SCE)付近の還元電流が低下した(図2)。50 mM 塩化ナトリウム溶液に炭酸水素ナトリウ ムを添加してもほぼ同様の変化があった(図 3)。

2. D J 極

DJ 極の成績を図4~6に示す。pH7の炭酸 水素ナトリウム溶液中の DJ 極も不活性であっ たが、pH7では-0.3 V (SCE) よりも貴な電 位域に酸化波を示し、pH6以下では電流ピーク になった(図4)。100 mM 塩化ナトリウム溶液 に炭酸水素ナトリウムを添加すると、0.0 V (SCE) よりも貴な電位域の酸化電流が低下し、 それとともに-0.6 V (SCE) 付近の還元電流が 低下した(図5)。50 mM 塩化ナトリウム溶液に

図 4 DJ 極の 50 mM 炭酸水素ナトリウム溶液中 における電位走査曲線

図 5 DJ 極の 100 mM 塩化ナトリウム溶液中にお ける電位走査曲線

はる電位走査曲線

炭酸水素ナトリウムを添加すると酸化電流の低 下が100 mM 塩化ナトリウム溶液の場合より 激しく, 還元電流の低下も顕著であった。また, 炭酸水素ナトリウム添加によって-0.2 V (SCE)付近に新規な還元電流ピークが出現し た(図6)。

3. D G 極

DG 極の成績を図7~9に示す。pH7の炭酸 水素ナトリウム溶液中のDG 極はDJ 極の2倍 に近い酸化還元電流を示したが,波形とその pHによる変化はDJ 極に同じであった(図7)。 100 mM 塩化ナトリウム溶液に炭酸水素ナトリ

図 7 DG 極の 50 mM 炭酸水素ナトリウム溶液中 における電位走査曲線

図 8 DG 極の 100 mM 塩化ナトリウム溶液中にお ける電位走査曲線

図 9 DG 極の 50 mM 塩化ナトリウム溶液中にお ける電位走査曲線

ウムを添加すると, DJ 極とは異なり, 炭酸水素 ナトリウム添加によってわずかではあるが還元 電流が増加し, -1.3 V (SCE) 付近の還元電流 ピークも増加した(図8)。50 mM 塩化ナトリウ ム溶液に炭酸水素ナトリウムを添加すると最貴 な電位域の酸化電流が低下し, 炭酸水素ナトリ ウム 50 mM では-0.1 V (SCE) 付近に新たな 還元電流ピークが出現した(図9)。

4.DS極

DS 極の成績を図 10~12 に示す。pH 7 の炭 酸水素ナトリウム溶液中の DS 極は DG 極類似 の電位走査曲線波形であり,その pH による変 化も DG 極に類似であった(図 10)。100 mM 塩

図 10 DS 極の 50 mM 炭酸水素ナトリウム溶液中 における電位走査曲線

図 11 DS 極の 100 mM 塩化ナトリウム溶液中に おける電位走査曲線

ける電位走査曲線

化ナトリウム溶液に炭酸水素ナトリウムを添加 した場合,DJ極と類似の変化を示すが,0.0V (SCE)よりも貴な電位域の酸化電流の低下は 50 mM 炭酸水素ナトリウム添加時のみに認め られた(図11)。50 mM 塩化ナトリウム溶液に 炭酸水素ナトリウムを添加した場合の変化は DJ 極に類似であった(図12)。

考 察

1. 従来型アマルガム

従来型アマルガム CP 極の炭酸水素ナトリウ ム溶液中における電気化学的挙動については, すでに電位走査曲線^{7,12)}および繰り返し充放電 曲線測定¹³⁻¹⁵⁾によって検討され,塩化物イオン がない場合,炭酸水素ナトリウム溶液中で CP 極が比較的不活性であることが示されている。 本測定(図1)でもpH7およびpH6では不活 性であり,これ迄の報告^{7,12-15)}を支持する成績 であった。しかし,炭酸水素ナトリウム溶液の pHを低下させると-0.5 V (SCE)付近から錫 溶出を示す酸化電流の増加が認められ,不活性 であるのは中性域のみであることが明かになっ た。これは炭酸の解離が酸性で抑制されること とともに一般に錫が酸性溶液で溶出し易くな る¹⁹⁻²⁴⁾ためである。

塩化ナトリウム溶液中の CP 極の陽分極電位 が炭酸水素ナトリウムの添加によって貴にな り、炭酸水素ナトリウムが錫の溶出を抑制する ことを報告13)したが、本測定(図2,3)でも塩 化物イオンが高濃度(50および100 mM)で あっても10mMの炭酸水素ナトリウムが錫の 溶出を抑制することが認められた。純錫および 錫含有の歯科用銀合金について、勝又25)は炭酸 水素ナトリウムによって-0.7 V (SCE) 付近の 錫酸化体還元電流が低下し, 錫溶出が抑制され ることを示す電位走査曲線を得ているが、これ は本実験の-0.8 V (SCE)付近の還元電流低下 に対応している。彼25)の電位走査曲線では貴な 側が-0.2 V (SCE) であったため、錫酸化電流 の低下が不明確であったが、本測定では0.4V (SCE)まで電位走査しているので、炭酸水素塩 による酸化電流低下は明らかであった。また、 彼²⁵⁾の成績では-0.8 V (SCE) 付近の2価錫酸 化体生成の酸化電流が炭酸水素塩の添加によっ て大となっている。本実験の CP 極でもその傾 向は認められ、炭酸水素塩による2価錫酸化体 生成量の増加が、錫溶出を抑制するものと考え られる。

2. 高銅型アマルガム DJ 極

高銅型アマルガム DJ 極の炭酸水素ナトリウ ム溶液中における繰り返し充放電曲線¹³⁻¹⁵⁾で は塩化物イオンがない場合, DJ 極が不活性であ り,陽分極電位が 0.5 V (SCE) 付近になること が示されている。本測定(図4)でも電位走査 曲線に大きな酸化還元電流が認められず,炭酸 水素ナトリウム溶液中では不活性であることを 支持した。本測定の電位走査曲線は既報⁷⁾の電 位走査曲線と波形が異なったが,これは電位走 査範囲の相違によるものと考えられる。

本測定の pH 6 以下の溶液で 0.1 V (SCE) 付 近に銅酸化体生成電流ピークを示す波形はクエ ン酸塩溶液^{26,27)},リン酸塩溶液²⁸⁾などで測定さ れ、クエン酸塩溶液では pH 低下によりピーク の電位が貴に移行することが示されている。こ れは酸化物の平衡電位の移行に基づくものであ る。本測定では pH による変化が不明瞭である が, pH 4 ではわずかではあるが, 貴に移行して いた。

既報¹³⁾では DJ 極の陽分極電位が 30 mM 塩 化ナトリウム溶液に 20 mM 炭酸水素ナトリウ ムを添加しても変化しないことから,この濃度 条件では塩化ナトリウム溶液中の DJ 極の銅の 反応に対して炭酸水素塩は影響しないと結論し た。しかし,本測定(図5,6)によると,特 に 50 mM 塩化ナトリウム溶液で明白である が,10 mM 以上の炭酸水素ナトリウムでは 0.0 V (SCE)よりも貴な電位域の酸化電流が低下 し,銅の反応を抑制することが明かであった。

一方,純銅および銅含有の歯科用銀合金の充 放電曲線測定¹⁷⁾では炭酸水素ナトリウムが銅の 反応を促進する結果が得られている。これは電 流規制による充放電曲線測定ではほぼ一定の電 位における滞在時間が長いのに対し,本測定の 電位走査法では強制的に短時間に電位を移動さ せるので,準定常状態と初期状態の相違と考え られるが,今後の検討が必要である。

3. 高銅型アマルガム DG 極および DS 極

高銅型アマルガム DG 極および DS 極の炭酸 水素ナトリウム溶液中における繰り返し充放電 曲線¹³⁻¹⁵⁾では塩化物イオンがない場合,両極が 不活性であり,陽分極電位が 0.5 V (SCE) 以上 になることが示されている。本測定(図7,10) でも,DJ 極と同様に電位走査曲線に大きな酸化 還元電流が認められず,炭酸水素ナトリウム溶 液中では不活性であることを支持した。DJ 極で は不明瞭であったが,DG 極と DS 極では銅酸 化体生成電流の立ち上がり電位は pH 低下に よって貴になり,酸化電流は低下した。これは pH 低下によって銅酸化体が生成し難くなるこ とを示す。

充放電曲線13-15)では DJ 極よりも DG 極およ

びDS 極の陽分極電位が高くなり、両極がDJ 極よりも不動態化し易い成績であったが、本測 定では 0.4 V (SCE)までを電位走査範囲とした ため 0.5 V (SCE)以上における相違は不明であ り、DG 極および DS 極の電位走査曲線は DJ 極 に類似であった。ただし、-0.5 V (SCE)付近 における 2 価錫酸化体の生成電流は DG 極およ び DS 極が DJ 極よりも大きく、この 2 価錫酸 化体が両極の不動態化し易いことに寄与してい ると推定された。DG 極 (図 8、9)では CP 極 と同様に炭酸水素ナトリウム添加によって-0.5 V (SCE)付近の 2 価錫酸化体生成電流の増 加が認められた。これはこの電極の錫が比較的 反応し易い^{13,15,29-33)}ためである。

充放電曲線¹³⁾では DJ 極と同様に DG 極およ び DS 極ともに塩化物イオンを含む溶液中にお いて炭酸水素ナトリウムはその陽分極電位に影 響しなかったが,本測定では,特に 50 mM 塩化 ナトリウム溶液(図9,12)で顕著であるが, DJ 極と同様に,炭酸水素ナトリウムは銅の反応 を抑制した。

高銅型アマルガムに共通であるが、炭酸水素 ナトリウムによって銅の反応が抑制されると2 価銅酸化体還元電流ピークが-0.1 V (SCE)付 近に出現した。DG 極は DJ 極および DS 極と比 較して2 価銅酸化体還元電流ピークが小さく、 これは2 価錫酸化体生成量が他の電極よりも多 く、これが銅の反応に影響するためと考えられ る。

4. 電位走査曲線と充放電曲線

歯科用アマルガムが炭酸水素ナトリウム単独 溶液において不活性であることは電位走査法と 充放電曲線測定法で認められた。不活性である ということは,反応が起こり難く,充放電曲線 測定では電位上昇が速いということを意味し, 電位走査速度の速い本測定と同じ知見が得られ るのは当然と考えられる。

しかし,反応が起こる場合,充放電曲線測定

では反応が定常的に起こる電位で電位の上昇が 止まるので,定電位的に反応を進行させるのに 対し,電位走査法では強制的に電位を変化させ るので,両者に相違を生じるものと考えられる。 本実験で高銅型アマルガムの銅の反応に対する 炭酸水素ナトリウムの抑制効果が認められたの はこのような相違に基ずくものである。

本実験の速い電位走査速度は、反応初期ある いは反応量が少ない状態に関する情報を示して いる。例えば、比較的大きな酸化還元電流が測 定された100 mM 塩化ナトリウム溶液中にお ける DJ 極(第5図)を例にとれば、-0.5 V (SCE)付近の銅酸化体還元電流ピークの電気 量は約16 mA/cm²であり、これは定電流2 mA/cm²で8秒の電気量に相当するので、著者 らの採用している充放電曲線測定条件ではかろ うじて検出される程度の電気量である。

結 論

市販歯科用アマルガム4種(従来型1種,高 銅型3種)について炭酸水素塩,塩化ナトリウ ム混合溶液中における電気化学的挙動を電位走 査法によって検討し,次の結論を得た。

従来型アマルガムは炭酸水素塩溶液中におい て不活性であったが、pH低下によって錫の反 応が顕著になった。塩化ナトリウム溶液中にお ける従来型アマルガムの錫の反応は炭酸水素塩 の添加によって抑制された。

高銅型アマルガムは炭酸水素塩溶液中におい て,酸化銅(I)生成電流ピークのみ著明な電位 走査曲線を示した。塩化ナトリウム溶液中にお ける高銅型アマルガムの銅の反応は炭酸水素塩 によって抑制され,2価銅酸化体を生成する傾 向を示した。

文 献

 野元成晃,柴忠一,横瀬勝美,田中昌一(1989) 銀,銅,錫,インジウムの充放電曲線.日大歯 研紀 17, 47-53

- 2)野元成晃,柴忠一,横瀬勝美,武田弘人(1991) 歯科用銀合金の繰り返し充放電曲線一塩素イ オンおよび撹拌の影響一.日大歯研紀 19,47-52
- 3)武田弘人,松井暢孝,鈴木信雄,伊出和郎,横 瀬勝美,野元成晃(1993)歯科用銀合金のリン 酸塩水溶液中における電気化学的挙動.防衛衛 生40,47-56
- 4)野元成晃,秋葉雅裕,鈴木孝彦,松浦佳代子, 大越哲也,大塚吉兵衛(1996)銀,銅,錫,イ ンジウムの充電放電曲線におよぼすチオシア ン酸イオンの影響.日大歯学 70,94-103
- 5) 横瀬勝美,野元成晃,伊藤英美,天野晋吾,田 澤孝治,大塚吉兵衛(1998) 歯科用アマルガム の乳酸塩溶液中における溶存酸素還元挙動.日 大歯学 72,235-241
- 6)野元成晃,守屋和章,木村寿,伊沢三樹,日野 浦光,小野瀬英雄(1979)歯科用アマルガムの 硬化途次における電位走査曲線.日歯保存誌 22,283-290
- 7)野元成晃,宮木了,石田昌也,佐藤甫幸,大塚 吉兵衛,竹内正(1980)各種無機化合物水溶液 中における歯科用アマルガムの電位走査曲線. 日大歯学54,1049-1055
- 8)野元成晃,松島一彦,安田豊,吉川広,大越寿 和,安藤進,小野瀬英雄(1981)歯科用アマル ガムの腐食傾向に関する研究一人工歯垢形成 用培地中における電位走査曲線一.日歯保存誌 24,606-617
- 9)野元成晃,柴忠一,横瀬勝美(1993)歯科用ア マルガムの遅い走査速度による分極挙動.日大 歯研紀 21,83-90
- 野元成晃,柴忠一,横瀬勝美,勝又徳昭(1994) 歯科用銀合金の酸性溶液中における分極挙動.
 日大歯研紀 22,43-48
- 野元成晃,紺野道広,西方譲,海谷幸利,福岡 雄人,荒井敏之,大塚吉兵衛(1994)銀,銅, 錫の酸性溶液中における電位走査曲線.日大歯 学 68,1004-1011
- 12)野元成晃,鈴木信雄,田中昌一,神山明生(2000) 歯科用アマルガムの炭酸水素ナトリウム溶液

中における電位走査曲線. 日大歯研紀 28, 41-48

- 野元成晃,柴忠一,横瀬勝美(1993)炭酸水素 塩溶液中における歯科用アマルガムの充放電 曲線.日大歯研紀21,77-82
- 14)野元成晃,横瀬勝美,鈴木信雄(1995)炭酸水 素塩溶液中における歯科用アマルガムの充放 電曲線一繰返し回数及び100mM塩化ナトリ ウムの影響一.日大歯研紀23,31-38
- 15)野元成晃,横瀬勝美,橋本宏二,平野治朗,鈴木貫太郎,大塚吉兵衛(1995)炭酸水素塩,リン酸塩混合溶液中における歯科用アマルガムの充放電曲線。日大歯学69,916-923
- 16) 脇野仁,伊東昌俊,蛯原誠治,小森二三夫,中 野喜右人,大塚吉兵衛,野元成晃(1992)炭酸 水素塩溶液中における歯科用銀合金の充放電 曲線.日大歯学 66,250-256
- 17)野元成晃,柴忠一,横瀬勝美(1994)歯科用銀 合金の塩化ナトリウム溶液中における分極挙 動に及ぼす炭酸水素イオンの影響;日大歯研 紀 22,49-55
- 田村嘉之(1995)電流規制法による歯科用銀合 金の炭酸水素塩、リン酸塩混合溶液中における 充放電曲線.日大歯学 69,60-68
- 田中昌一(1988)歯科用銀合金および銀,銅, 錫の電流規制法による充放電曲線.日大歯学 62,675-683
- 20) 塩路昌吾(1993) 電流規制法による歯科用銀合 金の酒石酸塩溶液中における充放電曲線.日大 歯学 67,345-353
- (1993) 電流規制法による歯科用銀合 金の乳酸塩溶液中における充放電曲線.日大歯 学 67, 791-798
- 22) 脇野仁(1994)電流規制法による歯科用銀合金の乳酸塩、リン酸塩混合溶液中における充放電曲線.
 日大歯学 68, 186-193
- 23)野元成晃,柴忠一,横瀬勝美(1994)電流規制 法による歯科用銀合金の乳酸塩・リン酸塩混合 溶液中における充放電曲線一低濃度リン酸塩 一.日大歯研紀22,67-73
- 24) 蓮見禎彦(2000) クエン酸塩溶液中における歯 科用銀合金の電気化学的挙動におよぼすリン

酸塩の影響. 日大歯学 74, 1-6

- 25)勝又徳昭(1981) 錫含有の歯科用銀合金および その組成金属の電気化学的挙動に及ぼすリン 酸塩,炭酸塩の影響.日歯材料器械会誌38, 538-548
- 26) 鈴木信雄 (1990) 歯科用アマルガムの電気化学 的挙動におよぼすクエン酸塩,乳酸塩混合溶液 の影響.日大歯学 64,57-64
- 27) 鈴木信雄,金子雄治,犬飼誠,相浦洲吉,鈴木 英之,原田秀一郎,野元成晃(1989)クエン酸 塩溶液中における歯科用アマルガムの電気化 学的挙動.日大歯学 63,373-378
- 28) 野元成晃, 横瀬勝美, 勝又徳昭 (1993) 歯科用
 アマルガムの電位走査曲線-走査時間の影響
 -; 日大歯研紀 21, 55-67
- 29)野元成晃,中村節子,鈴木誠,一宮晶三,岡田 通(1982)歯科用アマルガムの電位走査曲線

-初回走査に関する検討-. 日大歯学 56, 931-936

- 30)野元成晃,鈴木信雄,大森良一,山口徹郎,井 上達(1986)歯科用アマルガムの電気化学的挙 動に及ぼす塩酸濃度の影響.日大歯学60, 404-409
- 31)小野瀬英雄,野元成晃,柴忠一,横瀬勝美,田 中昌一,鈴木信雄(1986)歯科用アマルガムの 電気化学的挙動に及ぼす有機物質の影響.日大 歯研紀14,57-63
- 32)野元成晃,柴忠一,横瀬勝美(1993)塩化ナト リウムーリン酸塩混合溶液中における歯科用 アマルガムの電位走査曲線.日大歯研紀 21, 69-76
- 33)野元成晃,宮木了,鈴木信雄(1999)歯科用ア マルガムの錫酸化波;日大歯研紀 27, 37-44